Tag Archives: annual ryegrass cover crop

Soil Management Vs. Nutrient Management

You’ve probably seen this motto: “Feed the Soil, Not Just the Plants!” Doing that helps the soil prosper, and then the crop health and grower’s prosperity grow accordingly. This motto may somewhat represent the tilt towards “regenerative” or “sustainable” agriculture globally.

In the old days, feeding the plant necessary nutrients may have been adequate. But doing that disregards the quality of the soil and, in the long run, impacts the growth of crops and the profitability of the farm.

Here’s a rough definition of soil health, taken from a document at Cornell University: …”the continued capacity of the soil to function as a vital living ecosystem that sustains plants, animals and humans (NRCS, 2012). Characteristics of a healthy soil include good soil tilth, sufficient rooting depth, good water storage and drainage, rich and diverse soil life, stored carbon and an adequate supply of nutrients.”

There are three overlapping elements involved in assessing soil health: its physical nature as well as its biological and chemical properties. Managing nutrients only amounts to paying attention to just one of the three component parts.

In the above graph (developed by Cornell University) you can see a hypothetical analysis of a farm, wherein the chemical elements are all in the “green” or “ok” realm, but the physical and biological aspects are suffering. This is typical of farm acreage that has been in continuous tillage and mono-cropping for decades. So, even with the chemical aspect getting a passing grade, the overall quality of the farm soil is only “medium.” Medium won’t ever give you the best performance.

As the chart shows, some of the aspects of the soil’s physical health include its water carrying capacity, or “infiltration”. It also looks at compaction at the surface and down to about typical plowing depth.

Among the soil properties under the “Biological” heading, the assessment looks at the amount of organic matter, the “Autoclaved Citrate Extractable (ACE) Protein. which indicates the amount of protein-like substances present in the organic matter, the soil’s respiration and the amount of active carbon.

Though it might occur to you that there would be a lot of expense to assessing your fields’ soil health to this extent, agronomists at Cornell would disagree. “Qualitative, on-farm, in-field assessment of soil health does not need to involve special analyses, only the informed observation and interpretation of soil characteristics. This is usually done by visual assessment, but the smell and feel of soil may also be involved. Field test kits for measuring several indicators are also available (e.g. NRCS soil quality test kit).

The article goes on to say that, “While this approach is more subjective and therefore can reflect user bias, the results can be very informative in making management decisions when detailed guidelines and training have been provided.

Finally, the article says that, “The health of a soil can change over time as a result of use and management, therefore it is crucial to measure soil improvement when implementing new or modifying current management practices. Climate change, particularly the impacts of CO2 and N2 O, can be mitigated through improved soil health management while at the same time building soil resilience.”

Cover crops are an integrated part of the solution, part of moving away from nutrient management to soil health management. See the following management suggestions, again provided by the Ag Sciences folks at Cornell University. For each “constraint” against soil health, there are corresponding short term and long term management suggestions.

For more details on all of these concepts, check out the soil health management manual that Cornell has provided for free.

Cover Crops and Organic Matter

Organic matter, a foundational element of health soil, is the key to plant health and consequently human health. Without organic matter, there would be nothing to feed the myriad forms of life that make up healthy soil.

Cultivation of land leads to extreme loss of organic matter. Midwest crop acreage 150 years ago probably had between 4 and 5 percent organic matter. Some acres today have less than 2 percent. Thankfully, with no-till and cover crops, a healthy percentage of organic matter can be regenerated in a decade of careful application of conservation practices including cover crops.

According to crop scientists like John Biernbaum at Michigan State, there are multiple types of organic matter. First, there is the living part which includes plant roots, earthworms and other insects, bacteria, fungi, protozoa, and more, Then there are several “dead” parts of organic matter in various stages of decay. Some forms, like plant leaves, stalks and roots, break down in a matter of weeks to months, while other forms like tree trunks, take decades or longer.

Organic matter, in addition to being the primary source of food for the many forms of life in the soil, is also important for the infiltration and retention of moisture. Researchers tell us that each pound of carbon in the soil can retain up to 40 lbs of water.

Cover crops function in a couple of important ways in this cycle. First, they keep the soil in place, preventing erosion. Next, the roots of cover crops exude sugars that feed life below the surface. Finally, they create channels through which rain and snowmelt get deeper into the soil profile.

For more information about growing cover crops, check out this Management Guide.

The Germ Seed of Cover Cropping in the US – Part 14

The Chemical in Ryegrass that Crumbles Fragipan

The hunch that annual ryegrass use was breaking down the fragipan at Junior Upton’s farm in Illinois was like music to Lloyd Murdock’s ears. The University of Kentucky (UK) research team had begun to experiment with different chemicals in the greenhouse and field where he worked at the University of Kentucky’s Princeton farm and in the lab on the main campus.

While they waited for results on field plots of annual ryegrass they planted that year, the UK research team began working with the plant in controlled lab and greenhouse environments. They created extracts made from annual ryegrass roots, as well as from the foliage. “Naturally cemented fragipan clods were placed in a solution of annual ryegrass extract. Thirty days later the size and distribution of the remaining aggregates were determined. As the binding agent in the fragipan is dissolved by the chemical, the fragipan clod begins to fall apart. The greater the dissolution of the binding agent, the smaller the remaining aggregates.  Ag related chemicals were also tested but it was annual ryegrass that demonstrated the most significant ability to dissolve the cementing agents biding the fragipan particles,” he said.

Lloyd also made numerous trips to visit Junior’s farm in those years, to authenticate what they were experiencing there, and to apply what was being gleaned. “We’ve known, for example, that some plants do not exert much pressure at the root tip. Annual ryegrass roots tips, on the other hand, exert a high amount of pressure,” Lloyd said. “So those roots will seek out a crack or weak spot in the fragipan and break through there. It doesn’t take many roots getting through to make a difference. And when corn roots follow those same channels the following year, they’re getting access to nutrition and moisture below the fragipan,” he added. The combination of plant chemistry and root pressure has a dramatic effect on fragipan.

The UK team did replicated trials in five Kentucky and Indiana sites. Below, Table 1 shows, in controlled studies, annual ryegrass reduced the thickness of fragipan significantly at each site, allowing more soil depth for crops.

Dave Fischer is a beef producer from Indiana, and it is his Debois County farm mentioned in the table above. Fisher has planted annual ryegrass on his farm for the past eight years. “When I visited his farm last year, I found that he had lowered the fragipan depth by 14 inches and had annual ryegrass roots 29 inches deep,” Lloyd said.

“Those results floored me,” said Fisher in a video on the project. “But at the same time, I had noticed that these fields seemed to not dry out as fast compared to what they used to and to neighboring fields. We were hanging in there a lot longer during drought periods,” he said. “I would plant it just because of the forage, but the addition of breaking up the fragipan has just been super.”

“I’m more excited about this research than any other project I’ve worked on in my 45 years at the University of Kentucky,” Lloyd said in a University news article, “because it can help so many people. It is something that farmers can work into their operations now to increase their yields.”

As he prepared to retire once again, Lloyd said he has been grateful for the Oregon Commission, and others, whose support was crucial for the UK team’s work on annual ryegrass research. “And it looks like others who have noticed our work are picking up where we’ve left off,” he said with a smile. “Claire Phillips, who received her PhD from Oregon State University and has been a soil scientist for the USDA in Iowa for six years, as well as Dr. Dan Olk and Dr. Dana Dinnes are interested in continuing the work we began. And, likewise, John Pike, an agronomist at Southern Illinois University, has also expressed interest in helping to further the research of fragipan and to continue promoting the use of annual ryegrass as a cover crop.”

The Germ Seed of Cover Cropping in the US – Part 13

Annual Ryegrass…When “Breaking Up is Hard to Do”

An “aha” moment began this 14-part series, and it’s fitting we end it with another aha moment!

Dr. Lloyd Murdock has spent many of his productive years at the University of Kentucky as a soils and crop specialist. The link in the previous sentence summarizes a decades long effort that has earned Lloyd a well-deserved reputation as one of America’s “pioneers of no-till agriculture.”

“I had retired in 2012,” Lloyd recalled, “but specifically returned part time the following year to focus research on how to eliminate, or at least reduce, a deep layer of cemented soil called fragipan. Of course, during his career, Lloyd was aware of the seemingly intractable fragipan problem. “But with all the other things I was involved with, I didn’t have enough time. So, when I returned in 2013, I involved a soil chemist, soil pedologist and another agronomist and we set about doing lab, greenhouse and field testing on how to break up that cemented layer.” The breakthrough project is described in a lengthy report published last year by the University of Kentucky.

Fragipan soils are present in almost a third of the US, running from east Texas northeast into New York and parts of New England. In Kentucky alone, it hampers agriculture on 2.7 million acres. Fragipan is almost like bedrock in places, beginning anywhere from 18 to 32 inches below the soil surface. The layer becomes cement-like because of an iron-associated aluminosilicate that binds soil together tightly and restricts water penetration and root growth. Crops grown on these soils have limited soil depth, below which crop roots cannot go. Furthermore, in wet weather, fragipan prevents proper drainage. Topsoil gets saturated and squeezes out oxygen, increases the loss of nitrogen, delays planting, and increases the chances of even more soil compaction with any new tractor traffic.

In the 40 years he was researching and teaching the benefits of no-till, Lloyd said he recalled how people were addressing fragipan. “I was involved in early experiments injecting lime or other chemicals into the pan on 30-inch centers, hoping to break it down,” he said. “I was aware of field trials at other universities using deep mechanical rippers to break up the fragipan.  But in a short time, the soil would reconfigure and harden once again. It was quite expensive and none of it proved effective.”

Then in 2014, through the Oregon Ryegrass Commission, Lloyd was introduced to Mike Plumer, another pioneer in conservation agriculture who had been working on contract to the Commission since the early 2000s. It was he who had begun to quantify the value of annual ryegrass as a cover crop. Inadvertently, at Ralph “Junior” Upton’s farm in southern Illinois, they stumbled on the discovery of annual ryegrass’ deep roots. And in the process, they saw how ryegrass roots seemed to be growing into the fragipan on Junior’s compacted acreage.

“Everything happened by accident,” Junior said. “When I started, I only had about 5 inches of topsoil before I would hit the fragipan. I was trying to get through dry weather. I got a grant and started studying no-till and cover crops. Then a representative of Oregon Ryegrass Commission asked me to try annual ryegrass as a cover crop.”

“They’d stumbled onto something really big,” Lloyd said. “Thankfully, Mike and Junior kept good records on their annual ryegrass work. They found that after a few years, the corn production on the acres Junior planted annual ryegrass began to outproduce fields without it. When they started tracking progress on those fields in the early 2000s, he and Mike determined that Junior’s acreage was producing 10 to 20 bushels per acre less than the average in that county. Today, those same acres are producing 40 bushels per acre more than the county average.

The Germ Seed of Cover Crop Adoption in the US – Part 12

Cover Crop Adoption – Expanding Geometrically as Knowledge Expands Exponentially

“Planting annual ryegrass in the fall and seeing nothing come up is greatly disappointing,” said Jamie Scott, a 3rd generation Indiana farmer. “At first, cover crop experts chalked it up to planting too late, for example, or not enough fall rain to germinate the crop, or winterkill – getting frozen out in a harsh winter. That was in the early 2000s,” he added. “That was back when there was still a lot to learn about cover crops. And we’re still learning.”

By 2010, after extensive field trials and research, agronomists discovered that there could be residual herbicide in the field that prevented cover crops from taking root. “We would spray herbicides on fields in the fall to control winter annuals,” said Jamie, now a 20-year veteran of cover crop use. “And by the end of the winter, the effectiveness would have lapsed. But companies have come out with longer lasting herbicides that will keep weeds down for a year,” he added. “That’s great if you want the lasting effect, but it’s a problem if you plan to use a cover crop the following year.”(Check out this flyer)

Jamie is among a growing number of Midwest farmers who have expertise on how to successfully manage cover crops. After their first year, trying it out on three fields, the Scotts went all in, and now no-till and cover crop their entire 2000 acres. He has helped to pioneer aerial application of cover crop seeds, after experiencing how difficult it is to consistently get a cover crop planted after fall harvest.

“In our second year with cover crops, we tried a variety of planting methods. The third year, with a lot of advice from Mike Plumer and Dan Towery, we were putting the seed on with aircraft. We flew it on prior to harvest and thus gained weeks on the planting date. We tried using a helicopter one year, but shortly realized its shortcomings,” he continued. “We were trying to save a few pennies per load and ended up losing dollars on the other end.”

As the years went by, the knowledge about when and how to fly on seed kept growing, and Jamie has presented to national audiences with details needed to get started. As a result, Jamie started a side business – Scott’s Cover Crops LLC – in order to help other growers who now wanted seed applied earlier in the fall. “At the start, it didn’t really interfere too much with our farming operation,” Jamie said, “and my dad handled that for a month while I organized the cover crop application for customers.”

“But now it’s become almost a year-round business,” he explained. “As a turnkey operation, I manage the seed mix purchase and delivery, the aerial application and the termination of it in the spring,” he said, “and among the clients I’ve got in my cell phone, you’re looking at more than 100,000 acres.” That amounts to over 400 farmers in Northern Indiana and Southern Michigan.

Jamie is enthusiastic in terms of describing the changes in the industry in his lifetime. “I compare what happens to an individual who doesn’t care for themselves to that of the ag industry,” he said. “When I get to racing around during a busy time and I don’t eat right, I’m gonna pay for it. If I do that year after year, I run a higher and higher risk for some kind of health scare – heart attack or cancer, for example. Well, the same is true for farming. We’ve run up against a health scare, in which we’ve run down the quality of the soil and polluted the water and air in the process.”

In addition to his work in the field, Jamie has also been active as a cover crop educator, attending trade shows and introducing newcomers to cover crops, just as he was introduced 20 years ago. He is also the Chairman of his county’s Soil and Water Conservation District (SWCD), as well as being Vice-President of the statewide association of SWCDs. In that work over the past years, he has continued to learn about the partnerships that have formed to better protect the precious resources. Two in particular that he has worked with: Bob Barr, a scientist working for the Center for Earth and Environmental Sciences, and Jennifer Tank, PhD, Director of Notre Dame University’s Environmental Change Initiative. “Those people, and their universities, are helping all of us to understand the value of capturing carbon in the soil, keeping nutrients in the field, and thus improving the quality of watersheds that  eventually feed the Great Lakes and the Gulf of Mexico.”

The Germ Seed of Cover Crop Adoption in the US – Part 11

One Helping Hand Deserves Another

Jamie Scott, a 3rd generation Indiana farmer now in his mid-40s, grew up having heard about no-till and cover crops from his dad and grandad. As you may have read in earlier posts, no-till was barely on Midwest farmers’ radar screen in the 1980s, and cover cropping was even more of a rarity.

The Scotts had not adopted the practice vigorously at that time, and conventional tillage still ruled the day on their farm and most others farms as well. Nonetheless, the Scotts were not averse to it, which made a big difference. “My granddad would hand-sow clover or plant cereal rye with a spreader after harvest on certain plots,” Jamie said. “And I remember my dad telling me about his buying the farm next door in 1976. The previous owner, like my grandad, had also used cover crops. My dad was amazed to learn the difference between that neighbor’s fields and some of ours. Where he had consistently used cover crops, the organic matter was at or just above 4.0, compared to tilled acreage like ours which in places was as low as 2.5. That got my dad’s attention!”

It wasn’t until after attending a couple of ag conferences in 2002, though, that Jamie and his dad began to get serious with no-till and cover crops on their 2000 acres northwest of Fort Wayne. He visited the Oregon Ryegrass booth at the National No-Till Conference that year, and the Farm Machinery Show in Louisville, talking with Oregon grass seed growers Larry Venell and Don Wirth. “They were skeptical that I would be able get annual ryegrass to winter over that far north,” Jamie chuckled. “Back then, they thought annual ryegrass wouldn’t stand up to winter weather much north of I-70,” he added, “and we’re 125 miles north of there! One of the things that was helpful at the time was that they didn’t try to cover up what they didn’t know about ryegrass as a cover crop and how to manage it in this environment.”

Jamie Scott, Indiana farmer and cover crop advisor – https://www.no-tillfarmer.com/articles/7463-no-tiller-discusses-rotation-and-cover-crop-strategies

Fast forward to 2021. The entire Scott farm acreage is in no-till and cover crops. Jamie has become a regional expert on cover crops and oversees application and management of cover crop seed on more than 100,000 acres a year in his area. “If it weren’t for the Oregon Commission, and guys like Mike Plumer and Dan Towery to help me out, I probably wouldn’t be working with cover crops at all,” he said. “Their knowledge and willingness to come out to work through it with me was crucial.”

Their first year, after the corn and beans had come off the fields, Jamie and his dad Jim put in about 40 acres of annual ryegrass. “In that first year, the seed had three varieties in the same bag,” he said, “and this was before they had figured out which varieties were the hardiest. So, our results were mixed,” he added. “One corn field looked great, another was so-so, and the bean field we planted too late with annual ryegrass looked like nothing happened at all. But, the next spring, it turned out that even in the bean field, the ryegrass had sent out a lot of roots and we got benefits without much top growth. And in each of those fields, production was improved over fields where no cover crops were planted. We were sold after that,” he said. “In fact, I was driving by the bean field with an agronomist the following year, and he noticed without my saying anything that the beans where annual ryegrass had been planted looked greener and healthier.”

“I’ve come to understand that as stresses increase, like droughts, the greater are the benefits of cover crops,” Jamie added. “Take for example the deep rooting of annual ryegrass. It creates root channels that are used by corn plants to access moisture far deeper than otherwise. In dry years the difference in yield between cover-cropped acres and those in conventional tillage is remarkable.”

“The knowledge we lost in the 20th Century about no-till and cover crops is coming back,” Jamie continued. “After generations of nothing but deeper and deeper tillage, we’re becoming more conservation-minded as an industry. We’ve come to appreciate the connection between cover crops, soil health and crop production. On our property, we’ve gradually built the organic matter back up, and it has more than paid for itself in healthier soil and better production.

Annual Ryegrass – the Germ Seed of Cover Crop Adoption in the US – Part 8

New Equipment to Deliver Seed to the Soil; New Research about Ryegrass as a Cover Crop – Part 2

After meeting, the two university extension agents, Mark Mellbye from Oregon and Mike Plumer from Illinois, established a quick and easy rapport, which was key to the cover crop campaign. On Mark’s first visit, after meeting Mike, they traveled to Junior Upton’s land in hilly, southeastern Illinois. Junior had agreed to be a test farm for annual ryegrass as a cover crop. Both he and Plumer were experienced by then with no-till, and both had been experimenting with cover crops. Plumer had brought his own seed drill to plant annual ryegrass seed on Junior’s place in the fall, after the corn was harvested. Mark had arranged for Oregon seed to be given to Junior for the test plot.

“It took a lot of time to modify equipment for the no-till environment,” Mark said. “It was more than a decade before you would find planter/drills that could clear away excess residue from the row, open and close a slit in the earth for the seed and be able to maintain a uniform seed planting depth. It was a specialty piece of equipment, and while some innovators would modify their existing planters, buying a new one was part of farmers’ resistance to cover cropping.

Two other discoveries helped that issue. First, innovators showed success using planes to broadcast annual ryegrass seed. While it took more seed per acre with broadcasting than a drill, it was quick, it didn’t require a new equipment purchase, and it could be done without tying up a farmer’s time.

A second type of broadcasting seed was also developed, using high-clearance equipment with modified spreaders.

In both cases, a major benefit to aerial or broadcast seeding was that the window for planting a cover crop was opened considerably. Though experimentation, the early adopters found that seed could be sown while the corn or beans were still in the field. Yes, some of it would lodge in foliage and perhaps the coverage was less uniform than with a drill. And, yes, there was less seed-to-soil contact ideal for germination, especially if there wasn’t sufficient rain to establish the cover crop. But compared to the cost of acquiring specialized drill equipment, and the impracticality of planting cover crops after harvest, the cost of buying an extra 10 pounds of seed per acre was insignificant. (see the free management guide)

The second hurdle was to learn enough about the behavior of annual ryegrass as a cover crop to have more confidence talking to potential customers about what to expect and how to manage the crop. This phase was the one where Mark logged the most time. “I made more than 30 trips to the Midwest over a five-year period, during which I worked with Mike and others on gathering data on annual ryegrass research plots in nine different Midwest locations,” Mark said.

The research was in two basic areas: testing different annual ryegrass varieties – some brand new – and then how each variety responded to recommended doses of herbicide. Each of the nine plots was a minimum of five acres, and data was collected on repeated trials over a period of five years. What came out of the research, in addition to which varieties were the hardiest and which the easiest to manage, was the new understanding we have about the potential for herbicide “carryover” from a prior year’s weed control program, which can negatively impact the start of a new cover crop the following year. You can read more about that here. Mark said that Oregon seed growers provided all of the seed for the trials as well.

“During the herbicide trials, we got additional support from industry partners like BASF, Bayer and Monsanto,” Mark added. “And, of course, the contribution of land, time and equipment on the part of the partner farmers in the Midwest was of tremendous value.”

“The final hurdle to overcome was resistance to change,” Mark continued. “And that’s an ongoing effort. What truly helped was getting some research done, getting people like Mike Plumer and Dan Towery involved as educators. Then, beginning in 2010, the Oregon Commission began funding an outreach effort focused on education, not sales. We started with a series of annual ryegrass publications (click here), and because of our widespread research trials, ag media reporters and editors looked at the data and began to profile innovators like Junior Upton, Jamie Scott, Dan DeSutter and others.” These were the early adopters who became champions of no-till, cover crops and annual ryegrass.

“Each year,” Mark added, “me and others from Oregon would also go to the major industry trade shows. Each year, the interest in cover crops grew and the word of mouth provided a big shift in how the public viewed this new crop management practice.”

Likewise, each year, dozens of field day demonstrations would be held, where cover crops were being used and where the grower, and either Plumer or Towery, would give background and details for those with questions.

During the same time period, the Commission also produced a series of instructive videos on various aspects of growing and managing annual ryegrass as a cover crop. You can find those here.

In the next couple of blogs, we’ll introduce Dan Towery, a consultant with an amazing career devoted to conservation agriculture. His contributions, like Plumer’s and Mellbye’s, have helped thousands of growers ease into cover crops, with good advice and hands-on experience.

Annual Ryegrass – the Germ Seed of Cover Crop Adoption in the US – Part 7

Meet Mark Mellbye – Oregon’s ‘Johnny Appleseed’ of Annual Ryegrass – Part 1

As you may have read, Oregon grass seed growers and the state’s Ryegrass Commission were largely responsible for giving the Midwest cover crop initiative a substantial push over the past 25 years, as has been summarized in previous posts.

The growers you’ve read about in this series, namely Don Wirth and Nick Bowers, both named another Oregonian for acknowledgement, who put a considerable imprint on the project’s success. That man is Mark Mellbye.

Mellbye was raised in Oregon and earned two ag-related degrees from the state’s land grant college in Corvallis – Oregon State University (yes, another OSU!). He joined the Peace Corps after his first graduation and spent 18 months in Lesotho, teaching science and math, then another year traveling throughout Africa.

Before taking a position back at his alma mater, in 1986, Mark was an extension agent in Washington State. The nature of his position at OSU, he said, matched the state’s interest in helping to promote Oregon ag products, and that’s why he was able to spend so much time with Midwest cover crops in the past 25 years.

“A large part of my work in Oregon was to respond to local growers’ requests,” Mark said, “to work on projects of use to them.” Before he retired, Mark was the District Agronomist, overseeing OSU Extension projects in three counties, collectively known as “the grass seed capital of he world”. “The other aspect of my job, and the University was very supportive of this, was to help extend the marketplace for Oregon seed. The Midwest cover crop initiative was the focus.”

He added, “Of course, I was only marginally responsible for what happened with annual ryegrass adoption in the Midwest, but it’s impressive to think that when we started in the late ‘90s, there was no annual ryegrass seed sales to the Midwest whatsoever. Today, there’s upwards of 20 million pounds being shipped there for cover crop use annually, out of about 200 million pounds of annual ryegrass seed produced in Oregon.”

Mike Plumer’s name is forever linked with pioneering cover crops in the Midwest. What is less known is that Plumer, the Illinois crop advisor, didn’t consider annual ryegrass as a possible cover crop until he met Mark in 1997 and they began working together. Until then, Mike had been dabbling with cereal rye, winter wheat, hairy vetch and peas as cover crop potentials. And, as those who knew Mike understood, he was very principled and would immediately balk if he sensed he was being used for some commercial purpose, including the sales of annual ryegrass.

For the cover crop project to succeed, it would have to succeed on a number of fronts. After all, change is hard for most people, and new things tend to have bugs to work out before they are widely accepted.

“One hurdle was that the equipment needed to plant any seed into a no-till field – whether you’re talking corn, soybean or cover crop seeds – was in the process of significant upgrade and modification,” Mark said. “Today, machines can consistently plant those seeds into residue and even into green standing cover crops. Another hurdle was that the nature of annual ryegrass growth in cash crops was an unknown, but the notion was already out there that it should not be trusted. There was a suspicion, generated mostly by weed scientists, that annual ryegrass would become uncontrollable if it got loose in Midwest cornfields.”

“We’ve largely cleared those hurdles,” Mark said, “and we’re on our way to clearing the next one, which is largely educational. It may take the next generation of growers to accept the idea that conventional tillage is too expensive, and that despite the learning curve, cover crops are better for the wallet, for the soil and for the environment.”

Annual Ryegrass – the Germ Seed of Cover Crop Adoption in the US – Part 6

Learning by Doing; Importance of Innovators and Early Adopters – Part 2

“In the first five years of the annual ryegrass cover crop project in the Midwest, there was a lot of hand-holding going on as we learned what annual ryegrass could do, and most importantly, how to modify agricultural practices to make cover crops successful,” said Nick Bowers, Oregon grass seed grower and cover crop proponent. “Most of those who started trying cover crops early were already practicing no-till, so adding cover crops was an easier lift.”

And when it came to determine who was teaching who the most, it was a back-and-forth thing, for sure. “We had no idea how much we didn’t know about annual ryegrass,” Nick continued, “other than how it worked in Oregon and in the south, where most of our seed had gone for years. In the first decade of the project, we had some spotty successes because of that lack of knowledge. First, the seed we sent back wasn’t always able to withstand tough winter conditions – sub freezing temperatures, wind-chill and no snow, for example. We originally recommended that the annual ryegrass seed be planted in October, after corn harvest. And we wouldn’t figure out for a decade the effect that residual herbicide in a field could have on the next year’s cover crop, whether to diminish or even wipe out the next year’s growth.”

As for the problem of winterkill, Nick and many other Oregon growers worked on research trials in the Midwest and Oregon, trying to build more hardiness into new annual ryegrass varieties. The Commission hired Mike Plumer and Dan Towery to conduct years’ worth of trials, and other university agronomists began to work in tandem.

 It worried some that building a more tolerant annual ryegrass would make it harder to kill in the spring. So, the trials included that piece. If annual ryegrass was to be an accepted new crop in the Corn Belt, it had better grow easily, grow healthy, and die when sprayed with the proper mixture of herbicide. In the past 25 years, we’ve had no reports of annual ryegrass getting out of control, and that says a lot about the amount of education, because if you mismanage cover crops, bad things can happen. As the data grew, the Oregon team would alternate attendance at field day demonstrations and annual trade shows. Pamphlets, research papers, and videos helped to spread the knowledge. The trickle of interest became a torrent. 

Successful management of annual ryegrass depends on paying attention to details. Click here for a management guide to cover crop control.

“When we started,” Nick continued, “we thought the best way to plant annual ryegrass was to drill it after corn harvest in the fall. Since then our cooperating partners began aerial application of seed, flying it on while corn and soybeans were still in the field. That’s now the most popular way to plant. And more recently, people have found increasing benefits from ‘interseeding’ cover crops into the fields in the spring, when corn is basically knee-high.”

“As for the residual herbicide effect, we’re learning alongside those continuing to experiment, including lots of universities, and we share their successes and failures readily.” Check out this flyer we produced about that .

Nick’s work in the Midwest also led to a new business for he and a neighboring farmer, Wayne Kizer, a seed growing/distribution company, KB Seed Solutions, whose sole purpose is to provide high quality seed to those using cover crops.  “We started the company 14 years ago,” Nick said, because it became clear that people wanted to know precisely what was in each bag of seed – that it would do what it was supposed to do. Midwest customers wanted to be sure that what they were planting was designed to work well in that environment.”

Annual Ryegrass – the Germ Seed of Cover Crop Adoption in the US – Part 5

Learning by Doing; Importance of Innovators and Early Adopters – Part 1

When Nick Bowers joined the Oregon Ryegrass Commission, he was a third-generation family member to do so. His grandfather was among the founders of the Commission, a grower-funded group that promotes use of ryegrass in a variety of ways. It’s strictly a volunteer gig.

When Nick joined, he probably had no idea that he was about to become a leader and champion of cover crops in the Midwest. He didn’t know that in doing so, he would be helping to build quality back into depleted soil, where the bulk of corn and soybeans in the US are grown. Maybe he was surprised that it would result in a new business for him, in addition to his family farm. “And,” he said, “I would never have guessed in 2000 that by 2020 all but 10 percent of my farm would be in no-till.”

As the Chair of the Commission, Nick was there when the idea hatched to test annual ryegrass as a cover crop in the Midwest. He and other Oregon seed growers donated annual ryegrass seed they’d grown to help jumpstart the project. That initiative is now 25 years old and continues to bring market development and research of cover crops to new audiences.

Nick was among the first Oregon seed growers to visit the Midwest, along with Commission administrator Bryan Ostlund. There came dozens more trips as the years went by. “It was at a time I could easily travel, when my kids were younger and in school,” Nick said. “There were years when I was back east for a week a month,” he added. Nick, other growers and a career extension agent from Oregon State University, Mark Mellbye, were committed to seeing the project through and introducing it properly. “Mark was immensely helpful, both in Oregon and the Midwest,” Nick said. “It wasn’t about sales, but about research, field trials and education. I think our collective effort helped a lot, because you had university agronomists and even competing growers from Oregon emphasizing the same things over and over. It helped build credibility in the Oregon seed industry,” he added.

Nick recalls that, in the first few years of effort, Oregon growers sent only a few truckloads of annual ryegrass seed to growers in the Midwest. “It was tough finding people willing to try it out,” simply because it was novel, and it was a risk that successful farmers didn’t see a need to take. And I had quite a time of finding a proper storage facility for the seed we didn’t use right away,” he added. In fact, during one of his annual trips, Nick remembers noticing that a few pallets of seed had been broken into by mice and it had to be re-bagged. All of that changed as people began to find annual ryegrass easier than they thought to integrate into their no-till operation.

Nick said that initial success with “innovators” was important, because “early adopters” keep an eye on innovators, who were pretty excited at the results they were getting with annual ryegrass: erosion control, weed suppression, saving on nitrogen fertilizer and noticing a bump in yields.  Once the early adopters began buying seed, the sales of annual ryegrass began to multiply quickly. Some of them became seed distributors for Oregon growers. More importantly, they became the next tier of experienced trainers and educators. The cover crop revolution was growing roots.

In the next chapter, Nick and others will talk about the kind of “hands-on” work Oregon growers did to get cover crops accepted in the Midwest.