Tag Archives: Junior Upton

The Germ Seed of Cover Cropping in the US – Part 14

The Chemical in Ryegrass that Crumbles Fragipan

The hunch that annual ryegrass use was breaking down the fragipan at Junior Upton’s farm in Illinois was like music to Lloyd Murdock’s ears. The University of Kentucky (UK) research team had begun to experiment with different chemicals in the greenhouse and field where he worked at the University of Kentucky’s Princeton farm and in the lab on the main campus.

While they waited for results on field plots of annual ryegrass they planted that year, the UK research team began working with the plant in controlled lab and greenhouse environments. They created extracts made from annual ryegrass roots, as well as from the foliage. “Naturally cemented fragipan clods were placed in a solution of annual ryegrass extract. Thirty days later the size and distribution of the remaining aggregates were determined. As the binding agent in the fragipan is dissolved by the chemical, the fragipan clod begins to fall apart. The greater the dissolution of the binding agent, the smaller the remaining aggregates.  Ag related chemicals were also tested but it was annual ryegrass that demonstrated the most significant ability to dissolve the cementing agents biding the fragipan particles,” he said.

Lloyd also made numerous trips to visit Junior’s farm in those years, to authenticate what they were experiencing there, and to apply what was being gleaned. “We’ve known, for example, that some plants do not exert much pressure at the root tip. Annual ryegrass roots tips, on the other hand, exert a high amount of pressure,” Lloyd said. “So those roots will seek out a crack or weak spot in the fragipan and break through there. It doesn’t take many roots getting through to make a difference. And when corn roots follow those same channels the following year, they’re getting access to nutrition and moisture below the fragipan,” he added. The combination of plant chemistry and root pressure has a dramatic effect on fragipan.

The UK team did replicated trials in five Kentucky and Indiana sites. Below, Table 1 shows, in controlled studies, annual ryegrass reduced the thickness of fragipan significantly at each site, allowing more soil depth for crops.

Dave Fischer is a beef producer from Indiana, and it is his Debois County farm mentioned in the table above. Fisher has planted annual ryegrass on his farm for the past eight years. “When I visited his farm last year, I found that he had lowered the fragipan depth by 14 inches and had annual ryegrass roots 29 inches deep,” Lloyd said.

“Those results floored me,” said Fisher in a video on the project. “But at the same time, I had noticed that these fields seemed to not dry out as fast compared to what they used to and to neighboring fields. We were hanging in there a lot longer during drought periods,” he said. “I would plant it just because of the forage, but the addition of breaking up the fragipan has just been super.”

“I’m more excited about this research than any other project I’ve worked on in my 45 years at the University of Kentucky,” Lloyd said in a University news article, “because it can help so many people. It is something that farmers can work into their operations now to increase their yields.”

As he prepared to retire once again, Lloyd said he has been grateful for the Oregon Commission, and others, whose support was crucial for the UK team’s work on annual ryegrass research. “And it looks like others who have noticed our work are picking up where we’ve left off,” he said with a smile. “Claire Phillips, who received her PhD from Oregon State University and has been a soil scientist for the USDA in Iowa for six years, as well as Dr. Dan Olk and Dr. Dana Dinnes are interested in continuing the work we began. And, likewise, John Pike, an agronomist at Southern Illinois University, has also expressed interest in helping to further the research of fragipan and to continue promoting the use of annual ryegrass as a cover crop.”

The Germ Seed of Cover Cropping in the US – Part 13

Annual Ryegrass…When “Breaking Up is Hard to Do”

An “aha” moment began this 14-part series, and it’s fitting we end it with another aha moment!

Dr. Lloyd Murdock has spent many of his productive years at the University of Kentucky as a soils and crop specialist. The link in the previous sentence summarizes a decades long effort that has earned Lloyd a well-deserved reputation as one of America’s “pioneers of no-till agriculture.”

“I had retired in 2012,” Lloyd recalled, “but specifically returned part time the following year to focus research on how to eliminate, or at least reduce, a deep layer of cemented soil called fragipan. Of course, during his career, Lloyd was aware of the seemingly intractable fragipan problem. “But with all the other things I was involved with, I didn’t have enough time. So, when I returned in 2013, I involved a soil chemist, soil pedologist and another agronomist and we set about doing lab, greenhouse and field testing on how to break up that cemented layer.” The breakthrough project is described in a lengthy report published last year by the University of Kentucky.

Fragipan soils are present in almost a third of the US, running from east Texas northeast into New York and parts of New England. In Kentucky alone, it hampers agriculture on 2.7 million acres. Fragipan is almost like bedrock in places, beginning anywhere from 18 to 32 inches below the soil surface. The layer becomes cement-like because of an iron-associated aluminosilicate that binds soil together tightly and restricts water penetration and root growth. Crops grown on these soils have limited soil depth, below which crop roots cannot go. Furthermore, in wet weather, fragipan prevents proper drainage. Topsoil gets saturated and squeezes out oxygen, increases the loss of nitrogen, delays planting, and increases the chances of even more soil compaction with any new tractor traffic.

In the 40 years he was researching and teaching the benefits of no-till, Lloyd said he recalled how people were addressing fragipan. “I was involved in early experiments injecting lime or other chemicals into the pan on 30-inch centers, hoping to break it down,” he said. “I was aware of field trials at other universities using deep mechanical rippers to break up the fragipan.  But in a short time, the soil would reconfigure and harden once again. It was quite expensive and none of it proved effective.”

Then in 2014, through the Oregon Ryegrass Commission, Lloyd was introduced to Mike Plumer, another pioneer in conservation agriculture who had been working on contract to the Commission since the early 2000s. It was he who had begun to quantify the value of annual ryegrass as a cover crop. Inadvertently, at Ralph “Junior” Upton’s farm in southern Illinois, they stumbled on the discovery of annual ryegrass’ deep roots. And in the process, they saw how ryegrass roots seemed to be growing into the fragipan on Junior’s compacted acreage.

“Everything happened by accident,” Junior said. “When I started, I only had about 5 inches of topsoil before I would hit the fragipan. I was trying to get through dry weather. I got a grant and started studying no-till and cover crops. Then a representative of Oregon Ryegrass Commission asked me to try annual ryegrass as a cover crop.”

“They’d stumbled onto something really big,” Lloyd said. “Thankfully, Mike and Junior kept good records on their annual ryegrass work. They found that after a few years, the corn production on the acres Junior planted annual ryegrass began to outproduce fields without it. When they started tracking progress on those fields in the early 2000s, he and Mike determined that Junior’s acreage was producing 10 to 20 bushels per acre less than the average in that county. Today, those same acres are producing 40 bushels per acre more than the county average.

The Germ Seed of Cover Crop Adoption in the US – Part 12

Cover Crop Adoption – Expanding Geometrically as Knowledge Expands Exponentially

“Planting annual ryegrass in the fall and seeing nothing come up is greatly disappointing,” said Jamie Scott, a 3rd generation Indiana farmer. “At first, cover crop experts chalked it up to planting too late, for example, or not enough fall rain to germinate the crop, or winterkill – getting frozen out in a harsh winter. That was in the early 2000s,” he added. “That was back when there was still a lot to learn about cover crops. And we’re still learning.”

By 2010, after extensive field trials and research, agronomists discovered that there could be residual herbicide in the field that prevented cover crops from taking root. “We would spray herbicides on fields in the fall to control winter annuals,” said Jamie, now a 20-year veteran of cover crop use. “And by the end of the winter, the effectiveness would have lapsed. But companies have come out with longer lasting herbicides that will keep weeds down for a year,” he added. “That’s great if you want the lasting effect, but it’s a problem if you plan to use a cover crop the following year.”(Check out this flyer)

Jamie is among a growing number of Midwest farmers who have expertise on how to successfully manage cover crops. After their first year, trying it out on three fields, the Scotts went all in, and now no-till and cover crop their entire 2000 acres. He has helped to pioneer aerial application of cover crop seeds, after experiencing how difficult it is to consistently get a cover crop planted after fall harvest.

“In our second year with cover crops, we tried a variety of planting methods. The third year, with a lot of advice from Mike Plumer and Dan Towery, we were putting the seed on with aircraft. We flew it on prior to harvest and thus gained weeks on the planting date. We tried using a helicopter one year, but shortly realized its shortcomings,” he continued. “We were trying to save a few pennies per load and ended up losing dollars on the other end.”

As the years went by, the knowledge about when and how to fly on seed kept growing, and Jamie has presented to national audiences with details needed to get started. As a result, Jamie started a side business – Scott’s Cover Crops LLC – in order to help other growers who now wanted seed applied earlier in the fall. “At the start, it didn’t really interfere too much with our farming operation,” Jamie said, “and my dad handled that for a month while I organized the cover crop application for customers.”

“But now it’s become almost a year-round business,” he explained. “As a turnkey operation, I manage the seed mix purchase and delivery, the aerial application and the termination of it in the spring,” he said, “and among the clients I’ve got in my cell phone, you’re looking at more than 100,000 acres.” That amounts to over 400 farmers in Northern Indiana and Southern Michigan.

Jamie is enthusiastic in terms of describing the changes in the industry in his lifetime. “I compare what happens to an individual who doesn’t care for themselves to that of the ag industry,” he said. “When I get to racing around during a busy time and I don’t eat right, I’m gonna pay for it. If I do that year after year, I run a higher and higher risk for some kind of health scare – heart attack or cancer, for example. Well, the same is true for farming. We’ve run up against a health scare, in which we’ve run down the quality of the soil and polluted the water and air in the process.”

In addition to his work in the field, Jamie has also been active as a cover crop educator, attending trade shows and introducing newcomers to cover crops, just as he was introduced 20 years ago. He is also the Chairman of his county’s Soil and Water Conservation District (SWCD), as well as being Vice-President of the statewide association of SWCDs. In that work over the past years, he has continued to learn about the partnerships that have formed to better protect the precious resources. Two in particular that he has worked with: Bob Barr, a scientist working for the Center for Earth and Environmental Sciences, and Jennifer Tank, PhD, Director of Notre Dame University’s Environmental Change Initiative. “Those people, and their universities, are helping all of us to understand the value of capturing carbon in the soil, keeping nutrients in the field, and thus improving the quality of watersheds that  eventually feed the Great Lakes and the Gulf of Mexico.”

Annual Ryegrass – the Germ Seed of Cover Crop Adoption in the US – Part 8

New Equipment to Deliver Seed to the Soil; New Research about Ryegrass as a Cover Crop – Part 2

After meeting, the two university extension agents, Mark Mellbye from Oregon and Mike Plumer from Illinois, established a quick and easy rapport, which was key to the cover crop campaign. On Mark’s first visit, after meeting Mike, they traveled to Junior Upton’s land in hilly, southeastern Illinois. Junior had agreed to be a test farm for annual ryegrass as a cover crop. Both he and Plumer were experienced by then with no-till, and both had been experimenting with cover crops. Plumer had brought his own seed drill to plant annual ryegrass seed on Junior’s place in the fall, after the corn was harvested. Mark had arranged for Oregon seed to be given to Junior for the test plot.

“It took a lot of time to modify equipment for the no-till environment,” Mark said. “It was more than a decade before you would find planter/drills that could clear away excess residue from the row, open and close a slit in the earth for the seed and be able to maintain a uniform seed planting depth. It was a specialty piece of equipment, and while some innovators would modify their existing planters, buying a new one was part of farmers’ resistance to cover cropping.

Two other discoveries helped that issue. First, innovators showed success using planes to broadcast annual ryegrass seed. While it took more seed per acre with broadcasting than a drill, it was quick, it didn’t require a new equipment purchase, and it could be done without tying up a farmer’s time.

A second type of broadcasting seed was also developed, using high-clearance equipment with modified spreaders.

In both cases, a major benefit to aerial or broadcast seeding was that the window for planting a cover crop was opened considerably. Though experimentation, the early adopters found that seed could be sown while the corn or beans were still in the field. Yes, some of it would lodge in foliage and perhaps the coverage was less uniform than with a drill. And, yes, there was less seed-to-soil contact ideal for germination, especially if there wasn’t sufficient rain to establish the cover crop. But compared to the cost of acquiring specialized drill equipment, and the impracticality of planting cover crops after harvest, the cost of buying an extra 10 pounds of seed per acre was insignificant. (see the free management guide)

The second hurdle was to learn enough about the behavior of annual ryegrass as a cover crop to have more confidence talking to potential customers about what to expect and how to manage the crop. This phase was the one where Mark logged the most time. “I made more than 30 trips to the Midwest over a five-year period, during which I worked with Mike and others on gathering data on annual ryegrass research plots in nine different Midwest locations,” Mark said.

The research was in two basic areas: testing different annual ryegrass varieties – some brand new – and then how each variety responded to recommended doses of herbicide. Each of the nine plots was a minimum of five acres, and data was collected on repeated trials over a period of five years. What came out of the research, in addition to which varieties were the hardiest and which the easiest to manage, was the new understanding we have about the potential for herbicide “carryover” from a prior year’s weed control program, which can negatively impact the start of a new cover crop the following year. You can read more about that here. Mark said that Oregon seed growers provided all of the seed for the trials as well.

“During the herbicide trials, we got additional support from industry partners like BASF, Bayer and Monsanto,” Mark added. “And, of course, the contribution of land, time and equipment on the part of the partner farmers in the Midwest was of tremendous value.”

“The final hurdle to overcome was resistance to change,” Mark continued. “And that’s an ongoing effort. What truly helped was getting some research done, getting people like Mike Plumer and Dan Towery involved as educators. Then, beginning in 2010, the Oregon Commission began funding an outreach effort focused on education, not sales. We started with a series of annual ryegrass publications (click here), and because of our widespread research trials, ag media reporters and editors looked at the data and began to profile innovators like Junior Upton, Jamie Scott, Dan DeSutter and others.” These were the early adopters who became champions of no-till, cover crops and annual ryegrass.

“Each year,” Mark added, “me and others from Oregon would also go to the major industry trade shows. Each year, the interest in cover crops grew and the word of mouth provided a big shift in how the public viewed this new crop management practice.”

Likewise, each year, dozens of field day demonstrations would be held, where cover crops were being used and where the grower, and either Plumer or Towery, would give background and details for those with questions.

During the same time period, the Commission also produced a series of instructive videos on various aspects of growing and managing annual ryegrass as a cover crop. You can find those here.

In the next couple of blogs, we’ll introduce Dan Towery, a consultant with an amazing career devoted to conservation agriculture. His contributions, like Plumer’s and Mellbye’s, have helped thousands of growers ease into cover crops, with good advice and hands-on experience.

Annual Ryegrass – the Germ Seed of Cover Crop Adoption in the US – Part 3

Deep Rooting Annual Ryegrass Busts Compaction

In the last blog post, you learned that the Oregon Ryegrass Seed Commission funded field trials and research in the mid-to-late 1990s into mid 2000’s, to determine the ways in which annual ryegrass might be a beneficial cover crop. You also recall that this effort was triggered by an “ah-ha” that Oregon seed grower Don Wirth got from talking to Ohio farmers at the Farm Machinery Show, who were using annual ryegrass for grazing and sileage, but who found that it helped boost corn production in those same fields.

Don was so avid about the project that he carved out more time from his business to join the Ryegrass Commission board and voluntarily lead the new effort taking place in Illinois and Indiana. All seed companies were asked to donate annual ryegrass seed, specifically diploid ryegrass varieties, having two sets of chromosomes per cell instead of four (tetraploid varieties). These tend to be hardier in yield, even in less than ideal growing conditions. Don’s seed company agreed to mix and ship the seed at his expense. 

The plan began by inviting innovative farmers already no-tilling to add annual ryegrass to their management practice. On his first trip back, Don met with a number of people, including no-till pioneer Jim Kinsella, veteran agronomist Mike Plumer, and Purdue University agriculture professor Eileen Kladivco. Oregon seed grower and Commission member Nick Bowers came on that trip, as did Commission administrator Bryan Ostlund.

In the first year of the program, Purdue helped to locate cooperative growers eager to try a small plot of annual ryegrass. “The fact that cover crops require a change in management practices, it was important to start by learning from mistakes on small plots,” Don said.

Veteran cover crop researcher and educator Mike Plumer, examining the root structure of annual ryegrass in a core sample taken from a cornfield, where the annual ryegrass was introduced as a cover crop.

Among the first to try annual ryegrass included Dan DeSutter in Indiana and Ralph “Junior” Upton in Illinois. “Mike Plumer, an Extension agronomist at the University of Illinois, took me to Junior’s farm, a veteran of no-till who had begun experimenting with cover to reduce erosion,” Don continued. “He farms in Springerton, Illinois, on hilly, compacted and poorly drained soil that had very little topsoil when he started. The year after Junior planted annual ryegrass, Plumer returned and they dug into the field to look at root structure. They were dumbfounded to learn that annual ryegrass sent roots down to 40-plus inches deep, 10 inches deeper than either corn or beans were going that year.

In a tribute article to Junior’s innovative practices and willingness to teach others, No-Till Magazine gave him a “Legends of No-Till” award, along with an article, which is quoted below, in which different cover crops are discussed for their different benefits.

Cereal rye helps with weed control and soil erosion and is a great companion crop for the other cover crops. The root system of ryegrass helps to break up the fragipan in his soil and also assists with weed control. When managed properly, hairy vetch generates both supplemental nitrogen and additional weed control.

Some other early experimenters with annual ryegrass came to a different conclusion, based on some pretty awesome mistakes. “People thought annual ryegrass could become a pest if not controlled properly,” Don said, “and they’d be right about that. A weed specialist in Dickson Springs, Illinois,  told me ‘anybody promoting and selling  annual ryegrass is committing a crime!’ He based that on his failure using herbicide spray on the annual ryegrass in the spring. The booms on his sprayer were way too low and he was getting all kinds of skips in coverage,” Don added.

“Another weed scientist on the research farm in Jacksonville Tennessee, warned that annual ryegrass would easily develop a tolerance for glyphosate and other herbicides,” Don continued. “But, in his case, he was using a variety of annual ryegrass seed out of Australia (Lolium rigidum) instead of the varieties we grow in the U.S., which are all derived from Italian annual ryegrass (Lolium multiflorum). Again, these early mistakes are very useful, as we came to emphasize the importance of proper equipment and chemistry to successfully control the cover crop. In the 25 years we’ve been doing this, we haven’t heard yet of any horror stories of our varieties developing tolerance to herbicides.”

In the next blog, we’ll talk more about the methodical way in which Oregon seed growers and Midwest cooperating farmers began to flesh out the various benefits of annual ryegrass. We’ll also summarize the efforts seed  growers undertook to develop new varieties that would be winter hardy and still be susceptible to burndown in the spring. And finally, you’ll hear about the innovation taking place in the timing of annual ryegrass seeding and the different ways being developed to apply the seed economically.

Annual Ryegrass – A Quarter Century of Cover Crop Growth

Mike Plumer was still alive when the cover crop experiment began in the Midwest. An innovator from the get-go, Mike was doing his own farming while also on the faculty of the U. of Illinois, researching and helping area farmers become more successful.

In the mid 1990s, Plumer and Ralph “Junior” Upton got together and the revolution got a new boost. Upton had already been experimenting with cover crops on his Springerton, Illinois acreage. The year Plumer and he first planted annual ryegrass made their eyes practically bug out. Here’s how Junior describes it, in a recent SARE article:

Upton recalls introducing ryegrass into his system and seeing roots 48 inches deep, growing through the fragipan, even though above-ground biomass was less than five inches tall. Being vulnerable to droughts was an ongoing concern in the past, but now cover crops have helped to alleviate some of that worry by improving both the water-holding capacity of his soil and the rooting depth of his corn and soybeans. “Dry weather killed me in the past due to a fragipan,” Upton explains. “I had been farming the top five inches of soil, where now I use four feet of soil.”

Since then, the number of farms employing cover crops has increased dramatically, partly because of the educational work of Plumer and Upton. Until his death in 2017, Plumer was a tireless champion, and Upton continues his efforts that, he said, have been in the direction of conservation tillage since 1970.

In celebration of the quarter century of work that has gone into cover crop market development and usage, we’ll do some interviews with growers from Oregon who funded a lot of the research and development of winter hardy species of annual ryegrass and other cover crops. We’ll also interview some of the early adopters in the Midwest, and the innovators who came up with more efficient ways to plant cover crops and even how to interseed cover crops with standing corn.

While the adoption rate to cover crops has still been a drop in the bucket (a bit less than 10% of all farm acres in the Midwest are in cover crops), the rate of acceptance has continued to rise. At the current rate of new acres being planted, it’s estimated that we could double in the next 10 years what has been planted in cover crops in the past 25 years!

Pioneer of Cover Crops and Annual Ryegrass Talks Dry Year Benefits

Ralph “Junior” Upton (Springerton, IL) began using cover crops (buckwheat and hairy vetch) in the 1980s, mainly to reduce erosion on his hilly acres. In the 90s, he began looking for a cover crop to break up the hardpan soil just below plow depth. “I haven’t got the best soil, so I’ve always been tinkering with how to improve my yield, especially in dry years,” he said.

Working closely with Mike Plumer (a farmer and Univ. IL Extension educator at the time), Upton was among a half dozen Midwest producers who tried annual ryegrass on small plots, planted in the fall after harvest. “I rely on Mike for knowing what to look for in the soil. When I called him out that next April, we were all surprised to find ryegrass roots to 72 inches, with a top growth of only 4 inches,” Upton said. “I had always thought that you only get an inch of roots for every inch of top growth.”

Later that summer, after having killed the ryegrass and then planted corn, he went back to the same field location to see whether the deep ryegrass roots might have impacted the growth of corn roots. “The annual ryegrass opened up small channels that corn roots used to access deeper soil and moisture,” Upton said. Deep rooting has allowed his corn and bean crops to do better in dry years, because the cover crop also took care of the hardpan soil. “There was no longer any restriction to growth,” he added.

This year, having gotten only one rainfall when the corn was knee high, his crop was not as productive as in normal years. Still, with some farmers in his area mowing down their entire acreage, Upton was happy getting an average of 70 bu/ac. and a high of about 130 bu/ac. With temperatures above 100 degrees for weeks, many saw their corn fail to pollinate. Upton wonders whether pollination, in addition to deeper rooting (soil was bone dry to 3 feet), could be impacted by the presence of annual ryegrass.